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Abstract

In this thesis, we address the problem of reconstructing channel gain maps from sensor mea-
surements in wireless networks. For that purpose, and similar to previous studies, we model the
shadow fading with a linear tomographic projection technique [15/16,27]. More concretely, the
spatial loss field (SLF) captures the absorption generated by objects in a field. The long-term
shadow fading between two points is then estimated as the integral of the SLF and a weight

function that models the influence between each position of a map and the link.

Our work builds upon [41], which is, to the best of our knowledge, the first work to reconstruct
the shadowing attenuation in a map with barely no assumption on the structure of the weights
function. A nonparametric regression in reproducing kernel Hilbert spaces (RKHSs) was applied
to learn both the SLF and the weight function, and then reconstruct the shadowing attenuation
between any two points in a map. RKHSs is a popular method in the world of machine learning
due to the simplicity and computational efficiency of kernel methods relative to solving non-linear

problems [7./43].

However, The original problem is highly ill-posed. Therefore, we propose and evaluate an al-
gorithm which adds some structure to the problem by approximating the weight function with
non-linear kernels. More concretely, we rely on a multi-kernel method as a non-linear approach to
approximate the weight function. The resulting problem is non-convex, but we use a block-descent
technique to fix one of the variables while solving for the other one. The two new problems are
convex. To assess the proposed algorithms, we evaluated a 10 x 10 map for different SNR levels,
several frequencies and different room layouts. Results show improvements for any scenario when

compared with a baseline algorithm from the literature.



Zusammenfassung

In dieser Arbeit behandeln wir das Problem, Kanalverstarkungskarten anhand von Sensorenmes-
sungen in drahtlosen Netzwerken zu rekonstruieren. Ahnlich zu bereits durchgefiithrten Arbeiten
wird die Dampfung durch Hindernisse, die die Wellenausbreitung beeinflussen (Shadow Fading
oder Shadowing), mit einem linearen tomographischen Projektionsverfahren modelliert [15,16}27].
Genauer, das rdumliche Pfadverlustfeld (Spatial Loss Field, SLF) erfasst die Dampfungen, die
durch Objekte in einem Feld hervorgerufen werden. Auf das SLF wird dann eine Gewichtungs-
funktion angewendet, die den Einfluss jeder Position auf das Shadow Fading einer drahtlosen

Verbindung modelliert.

Unsere Arbeit basiert auf [41], der ersten Arbeit, die durch Shadow Fading verursachte Dadmpfun-
gen in einer Karte rekonstruiert und kaum Annahmen iiber die Struktur der Gewichtungsfunk-
tion macht. Eine nicht-parametrische Regression in reproduzierenden Kernen in Hilbertraumen
(Reproducing Kernel Hilbert Spaces, RKHS) wurde verwendet, um das SLF und die Gewich-
tungsfunktion zu erlernen und damit die Dampfung durch Shadowing zwischen zwei beliebigen
Punkten der Karte zu rekonstruieren. RKHSs sind eine weit verbreitete Methode im maschinellen
Lernen, da sie im Vergleich zu nichtlinearen Schatzungsfunktionen weniger komplex sind und eine

hohere Berechnungseffizienz aufweisen [7,/43].

Dennoch ist das Problem inkorrekt gestellt. Deshalb schlagen wir einen Algorithmus vor und
werten ihn aus, der dem Problem Struktur hinzufiigt, indem die Gewichtungsfunktion mit nicht-
linearen Kernen approximiert wird. Konkreter verwenden wir eine Multi-Kerne-Methode als
nichtlinearen Ansatz, um die Gewichtungsfunktion zu schitzen. Das resultierende Problem ist
nichtkonvex, aber wir nutzen eine Blockabstiegstechnik, um eine Variable festzulegen und das
Problem mit der anderen zu l6sen. Die zwei neuen Probleme sind konvex. Um den vorgeschla-
genen Algorithmus zu bewerten, haben wir eine 10 x 10 Karte fiir verschiedene Signal-Rausch-
Verhéltnisse, mehrere Frequenzen und unterschiedliche raumliche Anordnungen ausgewertet. Die
Resultate zeigen Verbesserungen in allen Szenarien im Vergleich zu einem Basisalgorithmus aus

anderen Arbeiten.
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1 Introduction

1.1 Motivation and Goal of the Thesis

Wireless networks are ubiquitous, and with the upcoming of the 5G systems not only people’s
lives are going to be impacted but also many industries are expected to undergo a revolution.
However, physical effects of wireless signals propagation such as attenuation will always set limits
to achievable performance. Therefore, an accurate representation of radio frequency environments
is a highly desired feature, due to its crucial role in many aspects of designing and optimizing
modern radio networks. Characterizing the geographical path loss distribution of radio channels
in the form of so-called radio maps is considered to be essential knowledge for many applications
in wireless networks. Furthermore, modern networks require not only the knowledge of the cur-
rent estimated coverage map state, but also the availability expected information in a reliable
manner will enhance the performance of the network and improve the usage of the scarce wireless

resources.

Many approaches for reconstructing channel gain maps have been proposed over the years. This
thesis relies on the approach of channel gain cartography, also known as radio frequency to-
mography, a groundbreaking geostatistics-inspired application that enables characterizing the RF
environment of any location in space. The most appealing feature of the utilized approach consists
in the non-trivial capability of inferring the channel gain between any two given points in a map,
rather than just the channel gain between a base station and the users connected to it. Moreover,
this ability to learn the channel characteristics is based only on the measurements taken from a

collaborating sensor network.

Channel gain cartography builds upon the fact that different objects absorb electromagnetic waves
differently, and consequently, they have different absorption factors. Therefore, if we are able to
measure or learn the absorption factors in each pixel of a map, then we would be able to obtain

information about the size and the position of these objects.

This approach is beneficial for many applications where the communication is peer to peer, such
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as device-to-device communtication (D2D), machine-type communications(MTC) or cognitive ra-
dio (CR). A plethora of theoretical and empirical channel cartography works have been proposed
in the literature, mainly for applications related to learning the position and characteristics of
objects located in a map, such as objects detection, see-through walls, motion tracking, and many

others [15,[32,/51}-53].

The abilities of channel gain cartography to A2A maps may improve the usage of the limited

wireless resources and optimize the network quality of service (QoS).

In order to reconstruct the channel gain map using channel gain cartography, we propose and
evaluate an algorithm that utilizes the powerful methods of reproducing kernel Hilbert spaces
(RKHS). We choose this method according to their ability to solve nonlinear problems in an
efficient manner [7,43]. The main strength of kernel methods lies in their ability to efficiently
map their input data space into a higher-dimensional (even infinite dimensional) feature space by
utilizing simple kernel functions, such kernels perform a nonlinear projection to a high dimensional
feature space without increasing the tunable parameters, in which the respective problems become
linearly solvable.

Kernel methods lean on the assumption that close data points in the feature space should have
similar output, therefore we only require a means of measuring similarity in the feature space.
However, computing every coordinate of a vector in the feature space might be impossible if the
feature space has very high or infinite dimensions. Furthermore, it is sufficient to compute the
inner products in the feature space by using the kernel function associated with the reproducing
kernel Hilbert space. This process is known in the literature as the kernel trick [10,|17]. Kernel
methods are used in many machine learning tools such as support vector machines (SVM) and
ridge regression. Moreover, these machine learning tools are frequently used in the field of map

reconstruction.

1.2 Outline

The mathematical background and an introduction to the kernel and multi-kernel learning meth-
ods are presented in chapter 2. Chapter 3 gives an overview of radio map reconstruction in general
and reconstructing path loss maps in more detail. In chapter 4, the system model and the prob-
lem statement are presented, in addition to multi-kernel methods for channel gain cartography.
Chapter 5 presents the experimental results and gives a numerical evaluation of the performance.

Chapter six summarizes the work and gives an outlook for future work.

16 Master Thesis, TU Berlin, 2018



2 Kernel Methods

This chapter introduces the most important theoretical concepts and mathematical fundamentals
of multiple kernel learning which defines in this thesis the tool used by channel gain cartography

to reconstruct the path loss maps.

2.1 Preliminaries

Vector Spaces: A vector space X is a non-empty collection of elements (the elements of a vector
space are called vectors) on which two operations are defined [29).
Let X be a vector space and F scalar field X x X — X, Fx X — X :

1- Addition : V x, y € X there is x+y € X.

2- Scalar Multiplication: Vx € X andVa € F, a-x € X.
So that for each pair of elements x,y in X there is a unique element x+y is defined as the sum
of x and y in X, and for each scalar multiplication « - x exists a unique element ax defined as
the scalar multiple of x by a in X.

The two vector space operations satisfy common axioms [29.|40]:
1. Commutativity of addition: for each pair of elements: x+y € X, x+y =y + x.
2. Associativity of addition: Vx,y,z€ X, (x+y)+z=x+ (y +2z).

3. Identity element of addition: there exists an element 0 € X, called the zero vector, so that:

x+0=x, VxeX.

4. Inverse elements of addition: for each element x € X there exists an element y € X such

that x +y = 0.

5. Compeatibility of scalar multiplication with field multiplication: for each scalar «, and

each x € V: (a(f)x) = a((px)).

6. Identity element of scalar multiplication: for each element x € X, 1x = x 1 is defined as

the multiplicative identity in F.
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7. Distributivity of scalar multiplication with respect to vector addition: for each pair of scalars

a, and each x € X: a(x+y) = ax + ay.

8. Distributivity of scalar multiplication with respect to field addition: for each pair of scalars

a,f and each x € X: (a+ f)x = (ax + fx).

Basis: Let X be a vector space and S a set of vectors in X then if there exists a finite number
of distinct vectors {xl,x2,...xn} € S such that {a1x1 + aoXo + ... anxn} = (0 with scalars
{al, s, ... an} not all equal to zero, then S is said to be Linearly independent [48].

If S is not empty and every vector in X can be expressed as a linear combination of vectors from
S, then S is said to generate(X).

In the vector space X the set of vectors S is called a basis of X if it is linearly independent and
it generates X.

A vector space having a finite number of basses is said to be finite dimensional and all other

vector spaces are said to be infinite dimensional.

Normed vector Spaces: Let X be a vector space, a norm over X is a real-valued function that
maps each vector x € X into a real number and is denoted by ||x||, the norm satisfies the following

axioms [48]:

1. The zero vector, 0, has a length of zero; every other vector has a positive length: |x|| >

0 and [|x]| = 0 if and only if x = 0.

2. Multiplying a vector by a positive number changes its length without changing its direction:

|lax|| = |a||x]|| for any scalar @ and any x € X.
3. The triangle inequality is taking norms as distances: ||x +y|| < [|x|| + |ly| Vx,y € X.

The normed linear vector space on X is the vector space X together with its norm ||.||.

18 Master Thesis, TU Berlin, 2018
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Inner Product Spaces: Let X be a vector space and let x,y be arbitrary elements in X, and F’
is either the field of real numbers R or the field of complex numbers C. The inner product on X
is a function that assigns to every ordered pair of vectors x and y a scalar value which is a map

X x X — F and denoted by [48]:
(x,y) =Y iy (2.1)
i=1

The inner product satisfies the following axioms V x,y,z € X and o € F:
1. (x,x) >0 and (x,x) = 0 if and only if x=0.
2. (x+yz)=(x+2z)+ (y+2)

3. {ax,y) = a(x,y)

4. (x,y) =(y,x) where (X is a complex conjugate of x).

The requirement 1 defines the positive definiteness, 2 and 3 define the linearity in the first com-
ponent and 4 defines the conjugate symmetry.

A vector space together with its inner product is an inner product space.

Complete Vector Spaces: A sequence {xn} in a normed space is defend as a Cauchy sequence
if [29):

|xm — Xn|| = 0 as n,m — oc.

A Banach space is a vector space X € R or X € C, which is equipped with a norm and is complete
with respect to that norm, that is to say, for every Cauchy sequence {xn} in X, there exists a
limit in X,

oo o0
ZHCETLHX<OO = an converges in  X.

n=1 n=1

A vector space is called complete if every Cauchy sequence has a limit (and therefore convergent)

in this vector space.

Master Thesis, TU Berlin, 2018 19



Multi-Kernel Methods for Channel Gain Cartography Amer Alattar

Hilbert Spaces: A Hilbert space denoted as H is a complete linear vector space with respect to
the norm produced by the inner product which is defend on X x X [29//40,48].

For all x,y € ‘H we have:

Gy < Il + Iyl (2.2)

where, ||x|| =1/(x,%) is a norm on H and the equality holds if and only if x = ay for some « € F
or y = 0, The inner product is bounded if both ||x|| and ||y|| are bounded, and several normed
vector spaces can be converted to Hilbert spaces by defining an appropriate inner product.

Examples:

1. the Euclidean spaces R™:

The inner product is defined on the Euclidean space as:
n
(x,y) = in, Yis (2.3)
i=1

Vx = (z1,22,..2n), Yy = (Y1, Y2, ...yn) € R*.

The resulting Euclidean norm is defined as:

Ixll2 = ([ Y Ixil? ¥x € R™. (2.4)

=1

The space R* is complete with respect to the Euclidean norm, thus the Euclidean space R*

is a Hilbert space.

2. 12 spaces: The inner product is defined on the 1% space as:
n
i=1

where (x,y) < 400 as [|x]| < 400 and ||y| < +o0.

The resulting norm in ? is:

(2.6)

The [? space is also complete with respect to the (> norm thus the I space is a Hilbert space.

3. L? spaces: let f = f(t), g = g(t) € L? .The inner product is defined on the L? space as:

b
(1), 9(t)) = / F()gtDt, (2.7)

20 Master Thesis, TU Berlin, 2018
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where (f, g) < +o0.
The resulting norm in L? is:
+o0 ) 1/2 )
It = (| " 1rwPa) e foy € 22 (28)
—00
The L? space is also complete with respect to the L? norm, thus the L? space is a Hilbert

space.

Linear Regression: Regression is a set of techniques for estimating relationships between vari-
ables. The linear regression model is a statistical procedure that aims to model the relationship
between scalar dependent variable Y = f(x) C R (response variable) and one or more indepen-
dent variables (predictor variables) xi,x2,...xp, as a linear line. The main challenge in linear

regression is to obtain a linear function [10,45]:
f(x)=(w.x) + b, (2.9)

that best models a given set of training points labeled from Y = {1, 2, m}, where w is the
weight function and b is called the intercept, or Y intercept.
Figure depicts a one dimensional linear regression function, where £ denotes the error for a

particular training example.

>

X

Figure 2.1: Linear regression for one dimensional function

Master Thesis, TU Berlin, 2018 21
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Least squares: let S be a training set with x; € X C R" , y; € Y C R. The main challenge
in linear regression, as mentioned in equation [2.9] is to find a linear function f that interpolates
the data, such as: f(x)=(w.x) + b. Least squares approach aims to approximate the solution
of over-determined systems by finding the parameters (w,b) to minimise the sum of the squared

deviation of the data [10],
l

SSE(w,b) = > (yi — (w.x;) — b)*, (2.10)

i=1

The function SSFE is defined as the square error function which calculates the error value as
the sum of squares. The function SSE can be minmised by differentiating with respect to the
parameters (w,b) and sitting the resulting n + 1 linear expression to zero.

Suppose d = 1:
1

—2> (yi — (w.x;) —b) = 0. (2.11)

=1

OSSE
ow

For more generalization and letting d be arbitrary:

then the sum of square error function can be defined as:

l
SSE(®) =) (yi — (wx;) —b)* = |A® —y]|3, (2.12)

=1

where ||-||, is the Euclidean norm and,

Y1) z1(1) 21(2) z1(d)
v v | z2(1) 962.(2) z2(d)
y(d) xl(l) .%'l(2) xl(d)

This approach is defined as a standard approach in regression analysis which was presented by
Gauss and Legendre independently in the 18th century depending on the idea of minimising the

sum of the squared deviations of the offsets (the residuals)

22 Master Thesis, TU Berlin, 2018
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Ridge Regression: Since Least squares depend on the inverse of the matrix A, which might
cause problems in computing w LS if this matrix is singular or nearly singular, and the fact that
any small changes to elements of x lead to large changes in A~!, in addition to the situation

when this matrix is not full of rank we can use the following solution [10,45]:

A A -1 .
W= (X’x n )\In> X'y, (2.13)

obtained by adding a multiple A € R of the diagonal matrix I,, to the matrix X'X, where I, is
the identity matrix with (n—l— 1,n+ 1) entry set to zero. This solution is called ridge regression also
known as Tikhonov Regularization which is named for Andrey Tikhonov. This type of Regression
penalize candidate solutions for using too many features, in order to give preference to a particular
solution with desirable properties,

l
L(w,b) = M(w.w) + > _((w.x;) + b — )7, (2.14)
=1

where the parameter A controls a trade-off between low square loss and low norm of the sollution.

2.2 Kernel Methods

Linear learning machines have a limited computational power. This point was highlighted in
the 1960s by Minsky and Papert [31], but the real world applications demand more expressive
hypothesis spaces than the simple linear function.

Kernel methods tackle this problem by offering a suitable kernel function that performs a nonlinear
projection to a high dimensional feature space without increasing the tunable parameters. This
method raises the computational capability of the linear learning machine [45].

The way of representing the target function defines the function complexity, which will afterwards
affect the difficulty of the learning task. The best case is to find a representation that matches the
desired learning problem, where the representation of the data in machine learning is considered

as a pre-processing step such that [10]:

X = (X1,X2, ..., Xp) — O(X) = (P1(X), ..., Pn(X)). (2.15)

This is equal to mapping the input space X into a new space F' = (¢(x)|x € X). This simple
mapping of the data into another space can greatly simplify the task of selecting the best repre-

sentation of the data.

Master Thesis, TU Berlin, 2018 23
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The space X is defined as the input space, and F' is referred to feature space. The quantities used
to characterize the data are defined as features, and the original quantities are called attributes.
Further, the task of choosing the most suitable representation is defined as the feature selection.
A kernel function can be considers as a function that takes its input vectors from the input space

X, and returns the dot product of the vectors in the feature space F such as:
K(x,z) = (®(x) - ®(2)), Vx,z € X, (2.16)

where @ is a mapping function from the input space into the feature space , and can be called as
kernel feature map. The feature map can also be formulated as any fixed linear transformation

x — Ax for some matrix A, in this case the kernel function is denoted as :
k(x,z) = (Ax - Az) = %AAz = %Bz, (2.17)

where B = AA is a squared symmetric positive semi definite matrix.

Input Space Feature Space

Figure 2.2: Feature Map

Figure 2.2. The function ¢ maps the data from the input space into a higher order feature space

where the nonlinear pattern can be shown as linear pattern.

Gram matrix: Let S be a set of vectors S = {Xl,XQ, xn} in an inner product space. The
Gram matriz is defined [45] as Hermitian matrix of inner products, n x n matrix G whose entries

are:

Gij = (¢(xi), 6(x5)) = k(xi,%;)- (2.18)

24 Master Thesis, TU Berlin, 2018



Amer Alattar Multi-Kernel Methods for Channel Gain Cartography
The Gram matrix has the following properties:

e G is Hermitian and positive-semidefinite.

e G is positive-definite if and only if the vectors x1,...,x,, are linearly-independent.

e rank G = dimspan{xi,...,X;,}.

The Gram matrix can be also called as the kernel matrix:

k(x1,x1) k(x1,x2) ... k(x1,%,)
K k(XQ',Xl) k(XQ., X2) k(xz., Xp) (2.10)
k(Xn,x1) k(Xn,X2) ... k(Xn,Xn)

Kernel Functions types: Kernel learning methods have received a high attention in the last
years according to there ability to shift from linearity to non-linearity in a simple and efficient
way. Thees properties of kernel function attracts a variety of applications to implement it, which
leaded to increase the available types of kernel functions. In 2010 there was stated 25 types of
kernel functions [47]. We state in the following paragraph the most two popular kernel functions,
which are the polynomial kernel function and the Gaussian kernel function.

polynomial kernel function: The polynomial kernel function is defined as [17] :
K(x,z) = (x"z+ ¢)4, (2.20)

where x,z are vectors in the input space, d denotes the polynomial degree, ¢ > 0 is a constant
and when ¢ = 0, the kernel is said to be homogeneous. An example of using the polynomial kernel
function was done in [54] for speaker verification.

Gaussian kernel function: The Gaussian kernel function is a widely used in various kernelized
learning algorithms and known also as radial basis kernel function or RBF kernel. This type of
kernel will be used later in this thesis in chapter four and it can be defined as [13]:

N2
K(x,2) = exp <_|X202z|2> (2.21)

where ||x — z||? is defined as the squared euclidean distance between the two feature vectors, and
o is a user defined parameter. Alternatively, The adjustable parameter o should be carefully
selected, according to its high influence on the kernel performance, where, the function will lack

regularization if it is underestimated, in the other hand, the exponential will behave almost
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linearly in the overestimation case.
Gaussian kernel function can also be defined as [50]:
K(X7 Z) = exp(—*y”x - ZH%):

where v = ﬁ There are also kernel functions proposed for particular applications, such as

natural language processing [§] and bioinformatics [42].

Cauchy-Schwarz inequality: Let X be an inner product space and x,z € X. The Cauchy-

Schwarz inequality holds if [45]

k(x,2)* = (B(x).2(2))* < | @(x)[|[| @ (=)l
= (2(x).2(x))(®(2).2(2)) (2.22)
=k(x,x)k(z,z),
where the equality holds if x and z are re-scaled from each other, which includes the case x or z

is the zero vector.
Reproducing Kernel Hilbert Spaces: A Hilbert space H is called a reproducing kernel Hilbert
space (RKHS) if there exists a kernel function k£ : X x X ——— R if:

o Vxe X, k(x,-) e H.

e VxeX, VfeH, f(x)=f kx,).

where the second property is called the reproducing property.
Let us formulate and prove some basic properties of reproducing kernels.
1. If a reproducing kernel exists for F', it is unique.

2. If K is a reproducing kernel for F', then for all x € X and f € F there exist
[f (@) < VEGX)[|f]|F-

3. If Fis a RKHS, then convergence in F implies pointwise convergence of corresponding func-

tions

The Kernel trick essentially is to define kernel function in the original space itself without defining
or knowing what the transformation function is, which allow to calculate inner products in the

high or infinite-dimensional feature space easily.
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2.3 Extension to Multi-Kernel

In the last decade, kernel learning methods have gained a high attention where different types
of kernel functions are successfully used in the literature and in various practical applications.
Depending on the fact that kernel functions are showing high efficacy in solving learning problems.
Multiple kernel learning (MKL) proposes using a set of predefined kernels instead of a single
one and learn an optimal linear or non-linear combination of kernels. This method has the
ability to combine data generated from different representations possibly from different sources
or modalities, which produce different measures of similarity corresponding to different kernels.
In such a case, combining kernels is a possible method to combine multiple information origins,
which requires building up various kernels. According to, [20] the practical case requires often
to base classifiers on combinations of multiple kernels. It has also been shown [20] that using
multiple kernels instead of a single one can enhance interpretability of the decision function and
improve classifier performance.

The kernel K(x,x’) in a MKL can be considered as a convex linear combination of other basis

kernels [39] and it is givin as:

M M
K(x,x) =M dnKn(x,%), withd, >0, dpn=1, (2.23)
m=1 m=1

where M is the total number of kernels.
MKL approaches have been used in various applications, such as object recognition in images [6],

event recognition in video [9].

Multiple kernel learning properties: The following paragraph sorts some of the MKL properties.
The Learning Method:
The existing MKL algorithms utilize various learning methods for determining the kernel combi-

nation function. These methods can be divide into five major categories:

1. Fized rules are functions without any parameters such as the linear combination algorithm
which use rules to set the combination of the kernels like summation and multiplication of
the kernels. This approach do not need any training and the weighting is learned in the

algorithm.

2. Heuristic approaches use a parameterized combination function. The parameters of this
function are generally defined by looking at some measure obtained from each kernel function

separately or some computation from the kernel matrix:
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3.

Optimization approaches use parametrised kernel combination function and learn the pa-
rameters by solving an optimization problem. The optimization Problem can be calculated

by obtaining only the combination parameters or integrated to a kernel-based learner.

Bayesian approaches clarify the kernel combination parameters as random variables, then
assign priors on these parameters and learn the parameter values from the priors and the

base algorithm.

Boosting approaches is a MKL algorithm inspired from ensemble and boosting methods
which add new kernels iteratively until reaching a stopping threshold when the performance

stops improving.

The Functional Form:

The forms of the existing MKL algorithms can be divided into three basic categories, which are

the linear combination, the nonlinear combination methods, and the data-dependent combination

methods, where the the linear combination methods are the most popular type of combinations

used in MKL algorithms.

The Target Function:

We can optimize various target functions when we choose the combination function parameters.

we mention an example of target function:

1.

Similarity-based functions which measure the similarity between the optimal kernel matrix
obtained from the training data and the combined kernel matrix. These functions choose
also the parameters, which improve this similarity. An approach [22] for measuring the sim-
ilarity between two matrices is known as kernel alignment (KA), which measures alignment

between two kernel functions.

The Training Methods:

MKL algorithms can be divided into two main groups according to their training methodology [14],

which are:

1.

28

One-step methods, in such methods, both the combination function parameters and the
parameters of the combined base learner can be calculated in a single pass. There are two
ways to compute the parameters in these methods, which are the sequential approach and the

simultaneous approach. In the sequential approach, the combination function parameters
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are computed at the first step, and afterwards a kernel-based learner can be trained by
implementing the combined kernel. The simultaneous approach, is able to learn both set of

parameters simultaneously.

2. Two-step methods also known as Heckman correction [37] use an alternating approach dur-
ing each iteration, where first the base learner parameters are fixed and the combination
function parameters are updated, and then the combination function parameters are fixed
while updating the base learner parameters. These two steps keep alternating until conver-

gence.

The Computational Complexity:

The computational complexity in a MKL algorithms is defined by the base learner computa-
tional complexity and its training method. One-step methods are generally faster than Two-step
methods but it is also affected by the learning method where using fixed rules and heuristics
learning method in most of the cases, do not require a long time to learn the parameters of the
combination function. One-step methods, which utilize optimization approaches to learn combi-
nation parameters, require higher computational complexity, where these methods are considered

as semi-definite programming (SDP) problem.
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3 Radio Maps Reconstruction

This chapter gives a general overview on radio maps reconstruction methods. First we present
the kriging interpolation method, then we describe the radio frequency tomography method,
afterwards we introduce the method of blind channel gain cartography, which is the work that

our thesis based on.

3.1 Kiriging Interpolation

Kriging, also known as Gaussian process regression, is a spatial interpolation technique for which
the interpolated values are modeled by a Gaussian process. It was first introduced in [26] for
reconstructing mining maps based on scattered measurements. This technique is based on the
methods of geostatistics. Depending on the spatial data, geostatistics can be applied to different
geographical domains such as environmental science, meteorology and mining exploration. In
fact, the framework of kriging estimation is based on the assumption that there is a relationship
between the measured data value at a point in a space and the location of this point, which means
that the estimated samples are spatially correlated. The last assumption implies that a suitable
correlation model for the data is needed. Kriging Interpolation has been applied in the wireless
communication realm to reconstruct different radio propagation features of a map where spatial
correlation of the features is assumed. We are focused in this work to the reconstruction of path

loss maps, also known as channel gain cartography.

Consider a two-dimensional area A C R?, the average link gain for an arbitrary point x with

respect to a reference point x’ is given in logarithmic scale as [2H4]:
Gr(x) = Go— 10 -7+ logygllx — x'||2 + s,(x), (3.1)

where x,x" € A, || - || denotes the Euclidean norm, Gy is the path gain at unit distance, v > 0 is
the path loss exponent, and s,(x) is the shadow-fading component, which is Gaussian distributed.

Note that all the parameters in (3.1)) are assumed to be known except for s,, which is unknown.
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In order to compute the estimated shadow fading value §,(x) at arbitrary position x’ via krieging,
The authors [26] use a weighted linear combination function of m neighboring known samples as

follows:
m

8e(x) = wi(x)se(xi), (3.2)

i=1

where Y " w;i(x) = 1, s,(x;) being the sample field measurements, and the weights w; represents
the Kriging coefficients of the estimator.

The strength of Kriging interpolator performance lies as the fact that it is a data based interpola-
tor, which means that we have to fit the correlation function to the data before the reconstruction
operation. This fact adds a certain complexity to the kriging interpolation algorithms, therefore
can be considered as a drawback for Kriging methods. Another drawback of Kriging interpolation
is that it does not scale well for big datasets, and the complexity of its standard form makes it

improper for online operation.

3.2 Model-Based Radio Frequency Tomography

In order to reconstruct path loss maps, various methods have been proposed in the literature.
One of the methods [16] relies on the received signal strength (RSS) measurements from networks.
These networks comprise of a set of wireless elements to detect and locate objects through radio
frequency (RF) tomography. Tomographic imaging techniques have been deployed in previous
works for different applications such as obtaining images of moving objects [53|, or tracking mo-

tion behind walls [52].

The radio tomography framework has also been used to model the shadow fading. in this ap-
plication a combination of two functions is used: One function is the spatial loss field (SLF),
which measures the attenuation caused of objects placed in the propagation environment. The
other function is the weight function, which models the influence by any position of a map to any
possible link within the map. Shadow fading is then calculated as the weighted integral of the

SLF function in this environment.

The work in |16] aimed to examine the shadow fading model between any transmitter n and
receiver m in a given area. For this purpose, they utilized a spatial integral function of the
SLF, denoted as g(s), which has a domain of every point s in the space weighted by a function

b(sn, Sm, s) as follow:

N = /g(s) b(sn, Sm, ) ds, (3.3)
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where 7, , is the shadow fading component between the transmitter and receiver, s,, denotes the

position of the transmitter, and s,, denotes the position of the receiver.

In practice the SLF function is discretized, which means aggregating the points into pixels and
representing the amount of contribution done by each pixel to the total path loss. Further, the
weight function should also be discretized. Therefore, g(s) can be replaced by a column vector g

and the discrete version of (3.3) is given by:

mun = bm,nga (3'4)

where by, , denotes the discrete tomographic projection row vector with elements corresponding

to each discrete pixel in the field g. The equation in (3.4)) can be rewritten in a matrix form as:
n = By, (3.5)

where the vector m contains the measurements of 7,,,, and the matrix B consists of the row
vectors by, , for each transceiver pair (m,n). The SLF can be now estimated using the following
equation:

g=B"1n. (3.6)

However, the inversion of (3.6] is not possible, since the matrix B is under-determined; i.e., there
are many more SLF pixels than there are measurements. Therefore the authors utilized Tikhonov
regularization as a regularization technique in order to solve this problem. In more details, the

problem they aimed to solve is given by:
. . AT ~—1 A
min||Bg — nlf; + wg’Cy g, (3.7)

where Cy is the expected covariance matrix of the SLF and w is the regularization weight. The

solution of the problem (3.7 can be stated in close form as:
9= (BYB+wC;Y) By, (3.8)

However, and in order to obtain a solution to g, an appropriate model for B has to be chosen.
There are many heuristics in the litterateur for this purpose. The authors presented three differ-
ent heuristics models, namely the Nesh model, the normalized ellipse model, and the inverse area

elliptical model. For this thesis, we chose the last model to model the weight function.

The NeSh model is the most common model used in computed tomography (CT), and a modifi-

cation for RF Tomography was introduced as the Network Shadowing (NeSh) model [1], [33]. In
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this model the path loss from shadowing is assumed to be proportional to a line integral across the
spatial loss field. The NeSh model differs from traditional tomographic line integral model in that
the weights are multiplied by the square root of the path length. This means the tomographic

projection is given by the following formula:

5(|sn — 3|) d3 (3.9)

1 e
b ny Smy = T
(Sn, Sm, 8) - /sn

where §(z) is the Dirac delta function. Using this model, the shadowing component simplifies as:

1 e
N = / g(s) ds (3.10)
Sn

AV dn,m
This modification was made so that the model matches the larger scale shadowing statistical

models. It was necessary because this model does not consider the effects of diffraction at all

Figure depicts the NeSh model where The arrow corresponds to the line of sight between the

transceivers, and the grey pixels correspond to the non-zero values of the discrete weight function.

Figure 3.1: NeSh Model
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The Normalized Ellipse model contains a selection function based on an ellipse similar to the
Fresnel zone, where the transmitter and the receiver define the foci of the ellipse and A\ defeins a
semi-minor axis length of the ellipse. This model was used in [16,41,51-53]. The authors gave

this function the value ﬁ inside the ellipse, and 0 elsewhere :

1 px(3n73m73)2 py(snysm»3)2
+ <1
d2 )\2 >\2 9
b(Sn, Sm,S) = Vinm Gt (3.11)

0 otherwise,
where d,, , is the distance between the transmitter and the receiver; and ps(sp,sm,s) and
Dy(Sn, Sm, 8) are projection functions that project the point onto an axis aligned parallel to the
line from s, and s,, , and centered between s,, and s,,. The main problem of using this model

is the lack of a clear rule for defining the variable lambda, together with the lack of no physical

justification for deciding the weights of all the pixels.

Figure[3.2| depicts this model. The arrow corresponds to the line of sight between the transceivers.
The ellipse defines the area with influence in the shadow fading between two transceivers placed
at the beginning and at the end of the arrow respectively. The width of the ellipse is defined by
the wavelength of the signal, and the grey pixels correspond to the non-zero values of the discrete

weight function.

Figure 3.2: Normalized Ellipse Model
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The last model presented by the authors is the inverse area elliptical model, the tomographic
weight function in this model is equal to the inverse of the area of the smallest ellipse containing
s that has the transmitter and receiver as foci. This model leans on the assumption that some
parts of the ellipse have a greater contribution than others. Since the part of the signal travelling
near the edge of the ellipse travels a longer distance than the part travelling nearer to line of
sight, they will be weaker, and contribute less to the total RSS. More specifically, this assumption
is presented by weighting points closer to the line of sight more than points located farther from
the line of sight (contained in ellipses with larger areas).

Mathematically, this model is represent as:

1

b(Sn, Sm, 8) = |— —|,
7T:U“n,m \/ d%,m + M%,m

where the parameter ﬁim is the length of the semi-minor axis of the smallest ellipse containing

(3.12)

the point s. More specifically,

pm(sn,sm,s)Q py(smsmas)Z

A3 + 17 p?

fi2 . = argmin | —1]. (3.13)
’ 1z

Figure[3.3|depicts this model. The arrow corresponds to the line of sight between the transceivers.
The multiple ellipses corresponds to different areas with influence in the shadow fading between
two transceivers placed at the beginning and at the end of the arrow respectively, this model
considers the area of the smallest ellipse that has the transmitter and receiver as foci. The grey

pixels correspond to the non-zero values of the discrete weight function.

11 )

-
7

NN
NN
\

Figure 3.3: Inverse Normalized Ellipse Model
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Exterior wall
3/8" Plywood, R11 insulation, Drywall
’ J 148.5" \

— 1/2" Plywood

Concrete Backerboard

1/2" 058 —

Figure 3.4: Diagram of shadow fading structure .

In order to emulate the environment of a practical application of RF tomography, the authors

built up an artificial testbed which creates a complex radio propagation environment. The testbed

was constructed of plywood, sheetrock concrete board and cinder block. Aiming to provide a more

sophisticated shadow fading environment, the structure was designed with interior walls and a

cinder block pillar in addition to the exterior walls. This provided a more complex environment

which should challenge the shadow fading models tested. The testbed is shown in Figure

i
(L L NR 1 BB
| L

Figure 3.5: Reconstructed results .
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This main goal in [16] was to reconstruct path loss maps using RF tomography by utilizing
different shadow fading models. However, they made strong heuristic assumptions on the structure
of the weights function depending on the location of the transmitters and receivers. The results

of the reconstructed path loss map showed poor performance as depected in Figure [3.5)

3.3 Blind Channel Gain Cartography

The work presented in the previous section along some other studies [16,34] rely on the physical
concept of the Fresnel zone, and made heuristic assumptions on the structure of the weight func-
tion depending on the geographical locations of the transmitters and receivers.

Another work [41] was done afterwards based on the same testbed structure as shown in Figure
This work was the first to tackle the problem of reconstructing the shadow fading in an
environment without depending on the assumption about the weights function structure. The
proposed solution in [41] is able to learn simultaneously the SLF and the weight function be-
tween arbitrary pairs of transmitter-receiver locations, without depending on any additional side
information. It reconstructs then the shadow fading between any two points in a map through a
weight integral of the slf, known as tomographic projection. Their work is based on the framework
of non-parametric regression in reproducing kernel Hilbert spaces (RKHSs), since as mentioned
in the introduction, they are simple to compute and efficient when compared to other non-linear
methods. Since the formulation leads to an algorithm that does not scale well with the num-
ber of measurements, a clustering technique was proposed to reduce the number of optimization
variables. The system model and approach presented in our work builds upon this approach,

therefore we will present it in more depth in the next section.
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4 A Multi-Kernel Method for Nonparametric

Channel Gain Cartography

This chapter is dedicated to describe the theoretical contribution of the thesis. First, we introduce
the system model for the linear tomographic projection technique that our work assumes. Then,
we state the problem and present the multi-kernel based algorithm to address it. This algorithm

is the main contribution of the thesis.

4.1 System Model

Consider a two-dimensional area A C R?, the power gain between two points x,x’ € A in a map

can be given, similar to [2-4/41], as a logarithmic function with the following form:
G(x, %) = Go — 7 logygllx — X/[l2 — 5(x,%) + <, (4.1)

where G represents the gain at unit distance, v > 0 is the path loss exponent, ||x —x’|| represents
the distance between two points x, %', s(x,x’) : R2xR? — R, denotes the shadow fading between
x and x’, and ¢ is the measurements noise. Note that s is the only unknown parameter in ,
therefore we only need to learn the shadow fading in order to reconstruct the path loss function. In
order to model the shadow fading in the map, and in a similar fashion to previous works [16}27,/41],
we adopted a tomographical model which weights the SLF by a weight function, which in turn

models the impact of each position on the link [55]:

5, %) = /A w( (%, %), da(x, %', %)) (%), (4.2)

where w : R x R — R, is the weight function; ¢; : R? x R? — R : (x,¥/) = ||x — x|
denotes the Euclidean distance between two points x,x’; ¢2 : R?2 x R? x R? — R : (x,x/,X)
|x — x||l2 + ||x — x/||2, denotes the sum of NLOS distances between these two points to a third

one X in the map, and f : A — R4 denotes the SLF. The value of the weight function in RF
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tomography [16] depends on the distances ¢; and ¢2, which in turn depends on the positions of
(x,x’,%) and the. For practical reasons and similar to [16,34,41], a discrete form of is used:

Np
s(x, %) = ¢ w(pr(x,x'), da(x, %, %)) f(%i) ~ 5(x, %) (4.3)
i=1

where N, denotes the total number of pixels in the map, and X; corresponds to the coordinate of
the pixel ¢ in the map. where ¢ € {1, vy Np}. The constant ¢ can be set to one without loss of
generality by absorbing any scaling factor into the shadow fading function. After discretizing the
shadow fading function, we can now discretize the SLF and the weight function. The discrete SLF
vector of a map with [V, pixels can be represented as f = (fl, - fn) € R, where f; := f(z;)
and ¢ = 1, ..., Np. Assuming channel reciprocity in the path loss between any two points in a map,
we can define the maximum number of links in the map as:

I = Np _ NP(NP_l)7 (4.4)

N, —2 2

where L denotes the number of links in a map with NN, pixels.
In order to discretize the weight function, we define the matrix W € RY*Ne containing all possible
weight values in the map. The total number of available measurements is given by:
N(N -1)

Ny = ——

(4.5)
The discrete shadow fading can be considered as a discrete version of is calculated as follows:

s=WF. (4.6)

4.2 Problem Statement

In order to estimate the channel gain in a map, N transceivers obtain measurements at locations
{x1,...,xny} C A with a total number of Ny measurements.

The channel gain between transceivers located at x and x’ can be obtained by solving , if
the value of s is known. As mentioned previously, in order to estimate the channel gain we need
to estimate s, where all the parameters in (4.1]) are known expect for the s. The estimated value
of the shadow fading between transceivers can be defined as § = s + ¢, where € denotes the

measurement noise. The problem can be defined then using the following formula:

min. |18 — WEIZ + pal[vec(W)13, +uzll £13- (4.7)

40 Master Thesis, TU Berlin, 2018



Amer Alattar Multi-Kernel Methods for Channel Gain Cartography

where pi1, o are properly selected regularization parameters.
Unfortunately, simulations have shown that solving (4.7) in this application domain fails to give
good results because the problem is highly ill posed. Therefore, to address this challenge, we

make use of a multi-kernel method as a non-linear approach.

4.3 Multi-kernel-Based Algorithm

To avoid the severe ill-posedness of the inverse problem described above, we further assume that

the weight function can be written as:

NN,

w(@)= > > o'k (¢, ), (4.8)

meM i=1
where M = {1, ..., M} denotes the index set of kernels; a]" is the scalar to be determined; k™ is
the my, kernel function, and ¢ = [¢1, ¢o]” € R2.
In this thesis, we implement the radial basis function, which is defend as:

1 *¢2H§)

k;r,bn’ = km(¢n7 ¢n’) = exp( 20_]3 (49)

where the value of o7 > 0 is a user defined parameter. Choosing the value of o7 is highly relevant
to obtain a good performance. In order to create a multi-kernel system associated with a set of
predefined kernels, we fixed each kernel £ to have a different value of o, which produces a K,

matrix. This matrix can be defined as:

m m
o K,
K, = : : . (4.10)
m m
LN,1 - FLN, LN,

The full kernel matrix which contains the entries of all m kernels is a diagonal matrix in which

every elements of the diagonal is the k;, kernel:

K1 0 0
0 Ky .. 0

K=| e (4.11)
0 0 K

Unfortunately, the number of variables for LN, increase very fast which makes the problem

intractable even for small map size. In order to solve this iisue and similar to [41], we replace
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¢ € {1,..., NsNp} with ¢, € {1,..., N.}, where N, << (NsNy,). The entries of W are then

approximated as:

Ne
w(@)~ Y D al'K™ (¢, ¢), (4.12)

meM =1

where ¢, represents the cluster centroids obtained from applying K-means to ¢;; € {1,..., NsNp}
with N clusters. In order to adapt these changes to the algorithm, we replace each ¢ ;) with
@, 1,1y, Where @, ;) represents the closest element of ¢, to the original element of ¢; ;) . Mathe-
matically it is described in the following way:

1.7) == ‘ _ 4.13
r(l,4) argce{rl?}{lNc}!!¢z,z ocll2, (4.13)

which produces a many-to-one mapping. We define K,,, € RNe*Ne a5 the mt" kenel matrix, and
R := [RT,... RY], where R; € RMsMoXNe ig a matrix whose Iy, column has a one at the centroid

position and zeros elsewhere. We can now define &,, = Ra,;, and approximate K, as:
K., ~ RK,,RT. (4.14)

The full multi-kernel matrix K € RMNexMNe iq°g given by:

Ky 0 0

_ 0 Ky ... O

K= ' e (4.15)
0 0 K,

The problem we want to solve can be formulated as:
T T p o~ |12 ~ T = 2
win s = (L, © STRKEI3 + i Ra + ol F13 (4.16)

where ® stands for the Kronecker product, and I;y, € RMNexMNe jg the identity matrix. This
equation is separately convex in & and f. In order to solve a separately convex problem,we use a
coordinate block descent method, where we fix one of the variables and solve a sub-problem for
this variable, and the resulting solution is then fixed in the next sub problem. This process keeps
iterating until reaching a predefined threshold for stopping. The algorithm used to address (4.16))
is presented in Algorithm
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Consider two sub-problems of (4.16]), namely (4.17al) and (4.17b)), where we solve for f and &
when the variables f and & are fixed. We can define (4.17a) and (4.17b) as:

min [|5 — (Tyn, ® fORKa|? + ma’Ka, (4.17a)

min. |3 ~ (Aaf)RE] + ml 15 (4.17b)

where Ag := diag(Aay, ---Aans )s Adim :Zf[:sl e; ® (al K, RT) and e; is the unitary vector with
all zeros but ith entry one. The solution of is given by:

a = [AfAT + peMN K]~ Ay3

In a similar way, the solution of [£.17h]is given by:

f = (ALK Aalk] + mNp Iy, | "1 ALS

Algorithm 1 Multi-kernel algorithm to solve
Input : w1, 2, &0}, £0], 8, K, N., M, R, maxIteration,e

Input Variables : converged < False, f[0] < random

while NOT converged AND i < maxIteration do
a updates:

Af — KTRT(IMNC X f[k])

alk + 1] + [AfA? + MQMNCR]ilAfg

f updates:

Ag = S0 e @ (a7 [k] K)T

Flb+1]  [AT[RAG[k] + i Ny, LAL3
Check end of while loop

k+—k+1

if |f* — ¥ < € OR i = mazlteration then
| converged < True

end

end

Output: ak, f*

The complexity of the algorithm is controlled by the two matrix inversions required in each
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iteration. The matrix dimension for the &-iteration is Nc¢ x Ne¢, while for the f-iteration the

dimensionality is N2 x N2 Accordingly, the number of operations is in O(N2 + (N?)3).



5 Numerical Evaluation

This chapter gives a numerical evaluation of the non-parametric channel gain reconstruction pre-
sented in the previous chapter. It presents also a performance comparison between our proposed
algorithm and the algorithm presented in [41] and briefely described in section as baseline in
different propagation environments. The different between their algorithm and ours is the use of

multiple kernels instead of single one.

Both proposed algorithms were tested with synthetic data to evaluate their performance. In
order to make a fair comparison between our work and the baseline, we used the same sce-

nario as in their work. Figure shows the original SLF map of the scenario. After the SLF

Figure 5.1: SLF map of 10 x 10 room

was normalized, high values (white) represent objects with a high absorption index, while zeros
(black) represent free space regions with low absorption index. To generate a synthetic weight
function, we used the inverse area elliptical model. The room was discretized into a 10 x 10

map and N = 80 transceivers were randomly placed. The total number of links in the map is



Multi-Kernel Methods for Channel Gain Cartography Amer Alattar

Np(N,—1)

L= 3

= 4950, from which we acquired Ny = 80(80 — 1)/2 = 3160 samples, corresponing

to 63.8% of all possible measurements.

We assume that most values of the weight matrix W are zeros, and the non-zero values are gath-
ered around the line of sight of each link. We also assume that most entries of the SLF vector
f are zeros, and the non-zero values are grouped together. We made these assumptions because
most of the map pixels represent the free space whose absorption value is negligible compared
to the absorption of solid objects, while non-zero entries of f represent walls and other of solid

objects in the map, therefore gathered in groups.

In order to model the weight function we used inverse area ellipse model |16], which is defined as:

0, if ¢y > ¢y + 2
w(pr, ¢2) = B (5.1)
min(Q(¢1, ¢2), QP1, 01 +6))  otherwise,

where A\ denotes the wavelength of the transmitted signal; § > 0, and

4
Tha/ 93 — 7

This model was previously depicted in Figure and also used in [53].

Q(¢1,¢2) ==

The number of kernels was varied between two up to four kernels. Increasing the number of
kernels to more than four added complexity to the problem, but as results show the performance

was limited between four and tow. Therefore we fixed the maximum number of kernels to four.

The best regularization parameters were acquired after performing independent grid-searches for
our algorithm since the optimal regularization parameters differ for different number of kernels.

Table presents the main simulation parameters.
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Table 5.1: Simulation parameters

Parameter Value Description

N, 10 x 10 Map size

L 4950 Number of links

N 80 Number of transceivers

Ny 2000 Number of measurrements

N, 1500 Number of clusters

M 1,2,3,4 Number of kernels

o1 0.12 First kernel width

o9 0.13 Second kernel width

o3 0.14 Third kernel width

o4 0.15 Fourth kernel width

1 5x 1079 Regularization parameter of W
%) 6 x 107 Regularization parameter of f
A 0,35 Signal wavelength

SNR 00 Signal to noise ratio

€ 1079 Difference threshold for |f¥ — fF+1|

We asses the performance of our algorithm and the baseline algorithm in different scenarios.
First of all, we created a noisy propagation environment, then we changed the wavelength of the
transmitted signal, afterward and to finalize, we changed the map and examined the performance

for the new map while keeping regularization parameters of Table

5.1 Noisy Conditions

In this scenario, we change the noise level in the propagation environment in order to add more
complexity to the environment and to assess the ability of our algorithm to reconstruct the
path loss map in such noisy environment. We implement the same environment to the baseline
algorithm in order to make a fair comparison between them. Figure depicts the performance

under noisy conditions of both approaches. More concretely, the normalized mean square error

Master Thesis, TU Berlin, 2018 47



Multi-Kernel Methods for Channel Gain Cartography Amer Alattar

(NMSE) is used as performance metric and calculated as:

1Y Y3

: (5.3)
Y13

where Y is any vector and Y is its reconstruction. The SNR levels comprise [0, 10, 20, 30, 40]
dB. All other algorithm parameters are kept as in Table

0.035 T T T T T T T
=¥ Single kernel
0 03, Two kernels | |
) =¥ Three kernels
== Four kernels
0.025
" 0.02
n
&
0.015
0.01
0.005
0
0 5 10 15 20 25 30 35 40

SNR [dB]

Figure 5.2: NMSE vs SNR for the SLF of single kernel (blue), two kernels (green),three kernels
(red), and four kernels(black).

We can observe from Figure that the performance of the single kernel method sufferers from
high degradation when the noise level increases. The baseline algorithm measured a NMSE of
the SLF at 0 dB of 0.0306. In fact, multi-kernel method shows much better performance at the
same noise level. Using two kernels reduced the NMSE to 0.0082, which corresponds to accuracy
improvement of over 70%. Moreover, using four kernels increased the accuracy to over 85%. The

values of NMSE for 0 dB noise level are shown in Table (5.2

Table 5.2: NMSE values for 0 dB SNR

Paremeter M=1 M=2 | Improvement || M=3 | Improvement || M=4 | Improvement

NMSE SLF | 0.0306 || 0.0082 73.2% 0.0075 75.49% 0.0045 85.29%
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The mean value of NMSE of the shadowing and the weight function for all levels are shown in

Table
Table 5.3: Mean NMSE values for all SNR levels
Paremeter M=1 || M=2 | Improvement || M=3 | Improvement || M=4 | Improvement
Shadowing 0.068 || 0.053 22.06% 0.048 29.41% 0.042 38.42%
Weight Function | 0.22 0.19 13.64% 0.15 31.82% 0.12 45.45%

In order to illustrate the performance of reconstructing the SLF, we depict in Figure the
reconstructed SLF of the baseline algorithm when the noise level is 0 dB. Figures and

show the reconstructed SLF of multi-kernel approach in the same environment for M=2,3 and 4

;respectively. We can visually determine that the the baseline algorithm fails to reconstruct the

SLF for this noise level, but we can notice improvement of the performance when increasing the

number of kenels.
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Figure 5.3: Reconstructed SLF using a single kernel
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Figure 5.6: Reconstructed SLF using four kernels

Figure 5.4: Reconstructed SLF using two kernels

Figure 5.5: Reconstructed SLF using three kernels
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5.2 Frequency variation

In this scenario, we change the wavelength of the transmitted signal A\. As mentioned before,
we use the inverse area elliptical model to model the weight function. In this model, A presents
the width of the ellipse containing the transmitter and receiver as foci. We did these changes,
in order to examine the ability of a multi-kernel method to reconstruct the path loss map while
varying the width of the ellipse. In fact increasing the wavelength will increase the width of the
ellipse, which will consequently increase the number of non-zero values of a weight function are
considered and the problem becomes more complex. For each kernel, we fixed lambda to ten
different values. The values of lambda comprise [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] meters.
All other parameters are kept as in table We implement the same changes to the baseline
algorithm while fixing all the parameters in order to make a fair comparison. Figure depicts

the performance of our algorithm and the base line. The performance metric is again NMSE

-3
55 x10 T T T T T T T T

== Single kernel
51 Two kernels
=¥— Three kernels
4.5 || == Four kernels

3.5

NMSE
w

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Wavelength [m]

1 1 1 1 1

Figure 5.7: NMSE vs A for the SLF of single kernel (blue), two kernels (green),three kernels (red),
and four kernels(black).

We can clearely see from Figure that the performance of the single kernel method sufferers
from high degradation when increasing A. This is due to the fact that increasing A will increase

the area in which the non-zero values of the weight function are considered, which results in de-
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creasing the reconstruction performance of the baseline algorithm. We can also remark that our
algorithm increases the considerably estimation accuracy from 0.3 m on. The baseline algorithm
has measured a NMSE value of the SLF of 17 x 1073 at lambda equals to 0.3 m. Our algorithm
measured NMSE value of the SLF of 12 x 1073 for the same lambda value, while using two kernels,

which corresponds to performance improvement of over 29%.

The greatest difference in the performance of our algorithm and the baseline algorithm can be
noticed at lambda value of 1 m, at which the width of the ellipse is at the largest value of both
approaches. The baseline algorithm obtais a NMSE value for the SLF of 53 x 10~3, while our
algorithm gets a NMSE value of 12 x 10~3 whith using two kernels, which corresponds to accuracy
improvement of over 50%. Moreover, using four kernels made a Precision improvement of over

67%. Table shows the NMSE of SLF values for wavelength equals to 1 m.

Table 5.4: NMSE values for 1 m wavelength

Paremeter M=1 M=2 | Improvement || M=3 | Improvement || M=4 | Improvement

NMSE SLF | 0.0053 || 0.0026 50.47% 0.0023 56.6% 0.0017 67.92%

The mean value of NMSE of the shadowing and the weight function for all wavelength values are

shown in Table [5.51

Table 5.5: Mean NMSE for all wavelength values

Paremeter M=1 || M=2 | Improvement || M=3 | Improvement || M=4 | Improvement
Shadowing 0.096 || 0.071 26.04% 0.062 35.42% 0.058 39.58%
Weight function | 0.58 0.46 20.69% 0.38 34.48% 0.31 46.55%
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In this scenario we change the map which corresponds to the artificial testbed introduced by [16]

and shown in Figure We replace it with a new map in order to asses the performance of our

algorithm in a different environment. All other algorithm parameters are kept as in table

Furthermore, we implement the same environment to the baseline algorithm in order to make a

fair comparison and depict the estimated SLF for each number of kernels. Figure 5.8 shows the

original SLF map of the scenario. Figure depicts the reconstructed SLF of. Figures
and show the reconstructed SLF of multi-kernel approach in the same environment for

M=2,3 and 4 ,respectively.

Figure 5.8: New SLF map of 10 x 10 room

The Table presents a numerical evaluation of the SLF NMSE for estimating the new map.

Table 5.6: NMSE values for the new map

Paremeter

M=1

M=2

Improvement

M=3

Improvement

M=4

Improvement

NMSE SLF

0.0021

0.00181

16.02%

0.00174

20.69%

0.00166

26.51%
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Figure 5.9: Reconstructed SLF using a single kernel

=

Figure 5.12: Reconstructed SLF using four kernels

=

Figure 5.10: Reconstructed SLF using two kernels

=

Figure 5.11: Reconstructed SLF using three kernels
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6 Conclusion and Outlook

The aim of this thesis was to reconstruct channel gain maps in wireless networks. To this end,
we modeled the shadow fading with a linear tomographic projection technique. We estimated the
shadow fading between two points as the integral of the SLF and a weight function that models
the influence of each position of a map to a link. In order to model the weight function, we
used the inverse area elliptical model. The original problem is highly ill-posed. Therefore, we
propose and evaluate an algorithm, which adds some structure to the problem by approximating
the weight function with non-linear kernels. A nonparametric regression in RKHSs was applied
to learn both the SLF and the weight function, and then reconstruct the shadowing attenuation
between any two points in a map. To assess the performance of the proposed algorithm, we evalu-
ated a 10 x 10 map for different scenarios, and we compared the results with the approach in [41].
First, we increased the noise in order to assess the performance in noisy environments. Then,
we increased the number of non-zero values considered by the window function by increasing the
wavelength, which consequently adds more complexity to the problem. Finally, we changed the
room layout in order to assess the robustness of the algorithm when the scenario topology changes.
All the previously mentioned scenarios were tested with to the baseline algorithm. Results show

performance improvements for any scenario when a multi-kernel approach is used.

Outlook and future research:

Reconstructing path loss maps using multi-kernel approach is a really interesting and promising
field of study. For the future work, we would like to extend the research and consider reducing
the assumptions on the weight function. More concretely, including all the pixels outside the
Fresnel zone. Furthermore, we would like to make use of different forms of regularization such as
1. Another interesting field of study is by considering online approaches. Furthermore, we can
extend our simulations by making changes such as creating our own tested to see the impact of
using different materials on that shadowing of the signal. We are also interested in increasing
the number of kernels used for this approach to more than four, since increasing the number of

kernels showed a clear performance improvement.
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